NMR Guidelines for ACS Journals **Updated December 2013** ## 1. NMR Text (Experimental Section) - 1.1 The compound must be clearly identified, for example in a header at the beginning of a) the synthetic procedure or b) the summary of spectroscopic data. - 1.2 List the nucleus being measured, any nucleus being broad-band decoupled, the solvent used (formula preferred, e.g. C_6D_6 over benzene- d_6), the standard used, and the field strength. - 1.2.1 Field strength should be noted for each spectrum, not as a comment in the general experimental section. - 1.2.2 The standard(s) may be specified in the general experimental section; as an example, 1H NMR data recorded in C_6D_6 listed as "residual internal C_6D_5H (δ 7.15)". - 1.2.3 Indicate solvent or peak suppression protocols used in collecting data. - 1.3 List the probe temperature when it is accurately known; ambient probe temperature is otherwise understood. - 1.4 Give ¹H NMR chemical shifts to two digits after the decimal point. Include the number of protons represented by the signal, peak multiplicity, and coupling constants as needed (*J* italicized, reported with up to one digit after the decimal). - 1.4.1 The number of bonds through which the coupling is operative, **J*, may be specified by the author if known with a high degree of certainty. - 1.4.2 Accepted abbreviations for multiplicities and descriptors are: s = singlet dd = doublet of doublets d = doublet dt = doublet of triplets t = triplet td = triplet of doublets q = quartet br = broad signal quint = quintet m = multiplet (denotes complex pattern) - 1.5 Chemical shifts should be listed consistently in a single article, starting either from downfield to upfield or vice-versa. Please consult the Author Guidelines for preferred formatting for each journal. - 1.6 Assign peak identities under the following circumstances: - 1.6.1 Non-decoupled or equivalent spectra have been collected (¹³C, ³¹P, etc.). - 1.6.1 2-D experiments have been performed. - 1.6.2 Unambiguous assignment is possible without additional experiments, such as in the case of an organometallic metal-hydride 1 H signal, PF $_6$ vs. MPPh $_3$ 31 P signal, etc. - 1.7 Give ¹³C chemical shifts to one digit after the decimal point, unless an additional digit will help distinguish overlapping peaks. - 1.7.1 Include peak multiplicities for ¹H-coupled ¹³C NMR spectra, or for signals in ¹H-decoupled spectra that are coupled to other magnetically active nuclei. - 1.7.2 A ¹³C NMR signal will be considered a singlet if the multiplicity is not assigned. - 1.7.3 Only rarely is a true multiplet observed in a ¹³C{¹H} NMR spectrum. However, a certain region may contain a group of unresolved peaks or signals. - 1.8 Mention of unobserved resonances is encouraged. ### Example 1 (no 2-D data collected): $(η^5-C_5Me_5Co)_2-μ-(η^4:η^4-C_9H_{10})$ (1): ¹H NMR (C_6D_6 , 400 MHz): δ -0.53 (s, 1H), 0.72 (d, 1H, J=4.0 Hz), 0.98 (s, 1H), 1.58 (s, 15H), 1.62 (s, 3H), 1.73 (s, 15H), 1.95 (d, 1H, J=4.0 Hz), 5.62 (t, 1H, J=4.0 Hz), 6.00 (t, 1H, J=4.0 Hz). ¹³C{¹H} NMR (C_6D_6 , 125 MHz): δ 10.2, 10.6, 17.4, 38.3, 51.5, 54.2, 60.6, 80.8, 81.0, 88.0, 88.7. #### Example 2 (2-D data collected): Silvestrol (2): 1 H NMR (CDCl₃ with 0.05% v/v TMS, 400 MHz): δ_{H} 7.10 (2H, d, J = 8.9 Hz, H2′ and H6′), 7.03-7.07 (3H, m, H3″, H4″ and H5″), 6.83-6.85 (2H, m, H2″ and H6″), 6.66 (2H, d, J = 8.9 Hz, H3′ and H5′), 6.42 (1H, d, J = 1.8 Hz, H5), 6.26 (1H, d, J = 1.7 Hz, H7), 5.18 (1H, s, H1″′), 5.01 (1H, d, J = 6.6 Hz, H1), 4.52 (1H, s, H2″′), 4.27 (1H, d, J = 14.2 Hz, H3), 4.15 (1H, br d, J = 11.2 Hz, H4″′), 4.05 (1H, t, J = 11.2 Hz, H3 $_{b}$ ″′), 3.88 (1H, J = 14.3, 6.8 Hz, H2), 3.86 (3H, s, OCH₃8), 3.69 (3H, s, OCH₃4′), 3.64 (3H, s, COOCH₃2), 3.49 (3H, br s, H5″′ and H6″′), 3.43-3.47 (1H, overlapped, H3 $_{a}$ ″′), 3.45 (3H, s, OCH₃2″′). 13 C NMR (CDCl₃, 125 MHz): δ_{C} 170.6 (s, COCH₃2), 160.6 (s, C4a), 160.0 (s, C6), 158.8 (s, C4′), 157.1 (s, C8), 136.7 (s, C1″), 129.0 (d, C2′ and C6′), 127.8 (d, C2″, C3″, C5″ and C6″), 126.6 (d, C4″′), 126.3 (s, C1′), 112.7 (d, C3′ and C5′), 109.6 (s, C8a), 101.9 (s, C3a), 95.2 (d, C2′′′), 94.0 (d, C1′′′), 93.9 (d, C7), 93.4 (s, C8b), 92.9 (d, C5), 79.7 (d, C1), 70.7 (d, C5′′′), 68.3 (d, C4′′′), 63.3 (t, C6′′′), 59.0 (t, C3′′′), 55.9 (q, OCH₃8), 55.1 (q, OCH₃4′), 55.0 (d, C3; q, OCH₃2′′′), 52.1 (q, CO<u>CH₃2</u>2), 50.3 (d, C2). #### Note Broad peaks between δ_H 1.5 to 3.0 ppm and at δ_H 3.79 ppm correspond to the protons of the OH groups on C-1, C-8, C-5" and C-6", which disappeared after D₂O exchange. #### Example 3: (*E,E*)-3,7,11-Trimethyl-2,6,10-dodecatrien-l-yl diphosphate (Farnesyl diphosphate, FPP, **3**): 1 H NMR (D₂O, 300 MHz): δ 1.61 (s, 6H), 1.68 (s, 3H), 1.72 (s, 3H), 2.17-1.99 (m, 8H), 4.45 (d of d, 2H, $J_{H,H}$ = 6 Hz, $J_{P,H}$ = 6 Hz), 5.23-5.15 (m, 2H), 5.46 (t, 1H, J = 6 Hz). 13 C NMR (D₂O, 75 MHz): δ 16.3, 16.6, 17.9, 25.9, 27.0, 27.2, 40.1, 40.2, 63.2, 120.5, 124.8, 125.1, 131.6, 135.9, 142.8. ³¹P NMR (D₂O, 121.5 MHz): δ -6.56 (d, 1P, $J_{P,P}$ = 21.9 Hz), -9.89 (d, 1P, $J_{P,P}$ = 21.9 Hz). ## 2. NMR Spectra (Supporting Information) Submission of spectra (.doc, .docx, .txt, .pdf, .tif) is strongly recommended for all new and/or key compounds. When submitting spectra, please consider the following guidelines: - 2.1 A caption should be included on the spectrum, noting the nucleus being measured, the solvent (formula preferred, e.g. C_6D_6 over benzene- d_6) and the field strength. - 2.2 A representation of the compound should be included on the spectrum please use ChemDraw or a related program. The compound identifier used in the manuscript should be included. - 2.3 The largest peak in the ¹H NMR spectrum should normally arise from the compound, not the solvent. - 2.4 All peaks in the ¹H NMR spectrum should be integrated. Chemical shift values should be included. - 2.5 The solvent peak should be clearly labeled on the spectrum. - 2.6 All peaks should be visible on the spectrum. Insets are encouraged to show expanded regions. At minimum, the spectral window should be -1 ppm to 9 ppm for ¹H NMR and -10 ppm to 180 ppm for ¹³C NMR. - 2.7 Font should be clear and large enough to read (minimum of 10 point). Horizontal orientation is preferred for spectra. #### Example 1: # Example 2: # Example 3: